
1 / 118

Algorithms and Datastructures

Holger Pirk

Slides as of 10/02/22 09:24

3 / 118

About this lecture

Context
• You had two algorithm classes
• You had a database class
• What could possibly be left to learn?
• Well, some of it is really just an application of what you know. . .
• . . . but some is quite specific to data management (most notably joins
and aggregations)

6 / 118

Non-Relational Operators

• Sort (Quick-, Merge-, Heap-, Tim-, Radix-, etc.)
• Top-N (using Heaps)

7 / 118

Now, let’s do something new. . .

9 / 118

What is the main problem of database normalization?

10 / 118

Your data ends up all over the place!

11 / 118

Example

Customer
ID Name ShippingAddress
1 Holger 180 Queens Gate
2 Sam 32 Vassar Street
3 Peter 180 Queens Gate

Order
ID CustomerID
1 1
2 2
3 3

OrderedItem
OrderId BookID

1 1
1 2
2 1
3 3

Book
ID Title Author
1 Database Management Systems Ramakrishnan & Gehrke
2 A Game of Thrones Martin
3 Distributed Systems van Steen & Tanenbaum

12 / 118

It needs to be put together again

14 / 118

Enter the Join

Joins are everywhere
• In part due to the whole normalization business

• These are mostly Foreign-Key joins (we’ll talk about those again in the
context of indexing)

• In part because combining (joining) data produces value
• These are more complicated (and interesting)

Examples
• Find users that have bought the same products
• Find the shortest route visting 5 of London’s best sights
• Find online advertisements that worked

• (lead to users searching for a specific term within a timeframe)

15 / 118

Revision

What you should know about joins
• Joins are basically cross products with a selection involving both inputs

Joins
• select R.r, S.s from R,S
where R.id = S.id

• select R.r from R,S where
R.r = S.s

Not a join
• select R.r from R,S where
R.r = "something"

• select R.r, S.s from R,S
where R.r = R.id

16 / 118

These are all called inner joins

17 / 118

Left, Right and Full Outer Joins

Left Join

A left join R
L
on S returns every row in R, even if no rows in S match. In

such cases where no row in S matches a row from R, the columns of S are
filled with NULL values.

Right Join

A right join R
R
on S returns every row in S, even if no rows in R match. In

such cases where no row in R matches a row from S, the columns of R are
filled with NULL values.

18 / 118

Left, Right and Full Outer Joins

Full Outer Join

An outer join R
O
on S returns every row in R, even if no rows in S match,

and also returns every row in S even if no row in R matches.

R
O
on S ≡ (R

L
on S) ∪ (R

R
on S)

19 / 118

On matching predicates

The matching function
select * from R join S on (R.r = S.s)

The matching function need not be equality
• If it is, we call the join an equi-join (these are the most important
joins)

• Algorithmically, they are equivalent to intersections

• If it is an inequality constraint (< or >), we call them inequality joins
select count(*) from event, marker where event.time
between marker.time and marker.time+60

• If it is an <> (!= in C syntax), we call it an anti-join
• All other joins are called Theta joins

21 / 118

Nested Loop Join

22 / 118

Nested Loop Join

Implementation
using Table = vector<vector<int>>;
Table left, right;
for(size_t i = 0; i < leftRelationSize; i++) {

auto leftInput = left[i];
for(size_t j = 0; j < rightRelationSize; j++) {

auto rightInput = right[j];
if(leftInput[leftAttribute] == rightInput[rightAttribute])

writeToOutput({leftInput, rightInput});
}

}

23 / 118

Nested Loop Join

Example data

R S
10 8
17 16
7 12

16 1
12 17
8 2

13 7

24 / 118

Nested Loop Join

Properties
• Simple
• Sequential I/O
• Trivial to parallelize (no dependent loop iterations)

Effort
• Θ(|left| × |right|)
• Can be reduced to Θ(|left|×|right|2) if value uniqueness can be assumed
• This is pretty terrible, isn’t there something better?
• There is. . .

25 / 118

The answer. . .

26 / 118

. . . is always either sorting or hashing – my DB professor

27 / 118

Sort-Merge Joins

28 / 118

Sort-Merge Joins

Implementation (assuming values are unique and sorted)
auto leftI = 0;
auto rightI = 0;
while (leftI < leftInputSize && rightI < rightInputSize) {

auto leftInput = left[leftI];
auto rightInput = right[rightI];
if(leftInput[leftAttribue] < rightInput[rightAttribue])

leftI++;
else if(rightInput[rightAttribue] < leftInput[leftAttribue])

rightI++;
else {

writeToOutput({leftInput, rightInput});
rightI++;
leftI++;

}
}

29 / 118

Sort-Merge Joins

Example data

R S
10 8
17 16
7 12

16 1
12 17
8 2

13 7

Example data

R S
7 1
8 2

10 7
12 8
13 12
16 16
17 17

30 / 118

Why Sort-Merge Joins works

Invariants
• Assume, w.l.o.g., that the value on the left
is less than the value on the right

• All values succeeding the value on the right
are greater than the value on right

• ⇒ No value beyond the value on the right
can be a join partner

• ⇒ The value on the left has no join
partners succeeding the value on the right

• ⇒ The cursor on the left can be advanced

Visualisation

>7>5

5
7

M
erge Direction

Comparison

31 / 118

Sort-Merge Joins

Effort
• O (sort (left)) + O (sort (right)) + O (merge), i.e.,
• O(|left| × log |left|+ |right| × log |right|+ |left|+ |right|)

• Assuming uniqueness

Properties
• Sequential I/O in the merge phase
• Tricky to parallelize
• Works for inequality joins

• Careful when advancing the cursors

32 / 118

Hash joins

33 / 118

Hash joins

Nomenclature
• We distinguish build-side (the side that is buffered in the hashtable)
and probe-side (the one used to look up tuples in the hashtable)

34 / 118

Hash joins

Implementation
vector<optional<vector<int>>> hashTable; // <- slots may be empty, hence optional
int hash(int);
int nextSlot(int);

for(size_t i = 0; i < buildSide.size(); i++) {
auto buildInput = buildSide[i];
auto hashValue = hash(buildInput[buildAttribute]);
while(hashTable[hashValue].hasValue)

hashValue = nextSlot(hashValue);
hashTable[hashValue] = buildInput;

}

for(size_t i = 0; i < probeSide.size(); i++) {
auto probeInput = probeSide[i];
auto hashValue = hash(probeInput[probeAttribute]);
while(hashTable[hashValue].hasValue &&

hashTable[hashValue].value[buildAttribute] != probeInput[probeAttribute])
hashValue = nextSlot(hashValue);

if(hashTable[hashValue].value[buildAttribute] == probeInput[probeAttribute])
writeToOutput({hashTable[hashValue].value, probeInput});

}

35 / 118

Hash join details. . . the hash function

Hash-function requirements
Pure no state

Known output domain we need to know the range of generated values

Nice to have
Contiguous output domain we do not want holes in the output domain

Uniform all values should be equally likely

Typical examples
MD5 pretty terrible

Modulo-Division arguably the simplest hash-function
MurmurHash one of the fastest "decent" hash-functions

CRC32 has hardware support

36 / 118

Conflict Handling

When a slot is already filled but there is space in the table. . .
• We need to put the value somewhere. . .
• The conflict handling strategy prescribes where

Requirements
• Locality (but not too much :-))
• No holes (probe all slots)

Many exist - let’s talk about
three
• Linear probing
• Quadratic probing
• Rehashing

37 / 118

Linear Probing

Description
• When a slot is filled, try the next one (distance 1). . .
• . . . and the next one (distance 2). . .
• . . . continue until you find one that is free (3,4,5,6, etc.). . .
• . . . wrap around at the end of the buffer

Advantages
• Simple
• Great access locality

Disadvantages
• Leads to long probe-chains for
adversarial input data

• For example, 9,8,7,6,5,4,3,2,2

38 / 118

Quadratic Probing

Description
• When a slot is filled, try the next one (distance 1). . .
• . . . double the distance (distance 2). . .
• . . . continue until you find one that is free (4, 8, 16, etc.). . .
• . . . wrap around at the end of the buffer
• (note that variants of this principle exist)

Advantages
• Simple
• Good access locality for first probes

• Increasingly worse after that

Disadvantages
• The first probes still
likely to incur conflicts

39 / 118

Rehashing

Description
• Challenge: Distribute probes uniformly
• Solution: Use hashing function for probing as well

Advantages
• Simple
• Conflict probability is a
constant

Disadvantages
• Poor access locality
• Challenge: How to make sure all
slots are probed

• Solution: cyclic groups

40 / 118

Hash-join with modulo hashing and linear probing

Simplified Implementation
vector<optional<vector<int>>> hashTable;

for(size_t i = 0; i < buildSideSize; i++) {
auto buildInput = build[i];
auto hashValue = buildInput[buildAttribute][joinAttribute] % 10; // hash-function
while(hashTable[hashValue].has_value)

hashValue = (hashValue++ % 10); // probe function
hashTable[hashValue] = buildInput;

}

for(size_t i = 0; i < probeSideSize; i++) {
auto probeInput = probe[i];
auto hashValue = probeInput[probeAttribute] % 10;
while(hashTable[hashValue].has_value && //

hashTable[hashValue].value[joinAttribute] != probeInput[probeAttribute])
hashValue = (hashValue++ % 10);

if(hashTable[hashValue].value[joinAttribute] == probeInput[probeAttribute])
writeToOutput({hashTable[hashValue].value, probeInput});

}

41 / 118

Example: Hash-join with modulo hashing and linear probing

Example data (linear probing)
int hash(int v) { return v % 10; }
int probe(int v) { return (v + 1) % 10; }
probeSide = {7, 8, 10, 12, 13, 16, 17};
buildSide = {1, 2, 7, 8, 12, 16, 17};

Illustration

42 / 118

Hash joins

Properties
• Sequential I/O on the inputs

• (Pseudo-random access to the hashtable during build and probe)

• Parallelizable over the values on the probe side
• Parallelizing the build is tricky (Research opportunities!)

Effort
• Θ(|build|+ |probe|) in the best case
• O(|build| × |probe|) in the worst case

43 / 118

What did I gloss over here?

44 / 118

Dealing with payloads

45 / 118

What else did I gloss over?

46 / 118

Dealing with duplicate values!

47 / 118

How would you deal with duplicate values?

48 / 118

Hash Joins practicalities

Hashing is expensive
• Especially good hashing

• Lots of CPU cycles (often more expensive than multiple data

accesses)

Slots are often allocated in buckets
• Buckets are slots with space for more than one tuple
• Roughly equivalent to rounding every hash value down to a multiple of
the bucket size

• You will sometimes see people implementing buckets as plain linked
lists

• This is called bucket-chaining (what we do is called open addressing)
• A horrible idea if you care about lookup performance (inserts are okay)

49 / 118

Hash Joins practicalities

Hashtables are arrays too
• They occupy space
• They are usually overallocated by at least a factor two

• i.e., you allocate twice as many slots as (estimated) tuple inputs

(obviously adapting the hash-function)
• They are probed randomly in the probe phase (a lot)

• You really want to make sure they stay in memory/cache
• For this class, assume that, if the hashtable does not fit, every
access has a constant penalty

• Rule of thumb: use Hash Joins when one relation is much smaller than
the other

50 / 118

Food for thought: Is that the common case?

51 / 118

What if it that is not my case?

52 / 118

Improving Locality through Partitioning

53 / 118

Partitioning

Fundamental premise:
• Sequential access is much cheaper than random access

• Difference grows with the page size
• Assume: Random value access cost c
• Sequential value access cost c

pagesizeOS

Assume your hashtable does not fit in the buffer page cache/pool
• I.e., if the relation is larger than half the buffer pool
• It can pay off to invest in an extra pass for partitioning

54 / 118

Hashtable thrashing

Visualization

Hashtable
Build

Build ProbeRandom accesses
to large array,

bad cache locality

55 / 118

Partitioning - an example

Visualization

14
12
17
5

9
…

input
Memory

(Capacity: 5 pages)2
0
1
1

partitioning
function (mod 4)

Pages
on disk

when page is filled
(semi-random but

without bandwidth waste)

for every tuple

56 / 118

Hashtable probing in partitions

Visualization

Build

v%4
== 0

v%4
== 1

v%4
== 2

v%4
== 3

Partition
Probe

v%4
== 0

v%4
== 1

v%4
== 2

v%4
== 3

Partition
HT0

HT1

HT2

HT3

Hashtable
Builds

Localized
Random
Access

57 / 118

Partitioning

Bonus
• You can parallelize the processing of each of the smaller joins

• because they are disjoint
• You can partition the larger relation as well. . .

• . . . and only join the overlapping partitions
• this is the state of the art in join processing

59 / 118

Observations

• All of these algorithms have phases:
• Build & Probe
• Sort & Merge

• What happens if I store/cache the result of the first phase?
• I have created an index

60 / 118

Context

Secondary Storage is about replicating data
• The opposite of normalization

• But in a controlled manner
• The DBMS is in charge of replicas
• They can be created and destroyed without breaking the system
• They are semantically invisible to the user, i.e, results cannot change
• They can be enormously beneficial for performance

However,
• They occupy space
• They need to be maintained under updates
• They stress the query optimizer
• They can only be used for certain operations

62 / 118

Some Nomenclature

Clustered/Primary Index
• An index that is used to store
the tuples of a table

• You can have no more than
one of these per table

• They may use more space
than a table but they don’t
replicate data (no consistency
issues)

Unclustered/Secondary Index
• An index that is used to store
pointers to the tuples of a
table

• You can have as many as you
like per table

• They don’t replicate data
(some consistency issues)

63 / 118

Our focus is on concepts and data structures. . .

64 / 118

. . . not the SQL to create them

65 / 118

That being said. . .

66 / 118

. . . here is some SQL!

67 / 118

Maintaining indices in SQL

Creating them
CREATE INDEX index_name ON table_name (column1, column2, ...);

Dropping them
DROP INDEX index_name;

68 / 118

This isn’t particularly useful yet

• Unclear what kind of index is created
• No control over parameters
• Virtually all systems provide much finer control (look at their
documentation)

69 / 118

Creating indices in SQL Server

CREATE [NONCLUSTERED] COLUMNSTORE INDEX ...
CREATE CLUSTERED COLUMNSTORE INDEX ...
CREATE CLUSTERED COLUMNSTORE INDEX with data_compression ...
CREATE UNIQUE CLUSTERED INDEX index_name ...
CREATE UNIQUE NONCLUSTERED INDEX index_name ...
CREATE CLUSTERED INDEX index_name ...
CREATE NONCLUSTERED INDEX index_name ...
CREATE NONCLUSTERED INDEX index_name WITH FILLFACTOR= ...
...

70 / 118

So. . . what do systems do under the hood?

72 / 118

Hash-Indexing

Remember Hash-joins?
• Step one was building a hash-table
• A hash-index is the same thing but persistent
• If you recall: I glossed over payloads
• Now, they are coming back

73 / 118

Hash-Indexing

Unclustered Hash-Index

7

5

1

3

3

1

4

2

Key Pos
5

3

7

1

HashTable Relation

Clustered Hash-Index

7

5

1

3

Key Non-Key Attributes

12 78 1

21 55 2

16 9 34

84 17 69

Clustered Relation

74 / 118

Hash-Indexing

Ephemeral hash-tables
• For hash-joins, we were building one-shot Hashtables

• there are no new tuples added during query evaluation
• We knew (roughly) how many tuples are going to end up in the table

• The hash-table was discarded after the join
• we did not have to worry about updating it

• If the hash-table is persistent, all of that changes

75 / 118

Hash-Indexing

Persistent hash-tables may grow arbitrarily large, so
• Overallocate by a lot
• If fill-factor grows beyond x percent (e.g., 50 percent), rebuild

• Rebuilds can be very expensive
• This leads to nasty load spikes

• Similar for deletes
• Let’s talk about those. . .

76 / 118

Hashtable deletes

• Remember: we used empty slots as
markers for the end of probe-chains. . .

• and we want short probe chains
• On delete, a value has to be remain in
the slot of the deleted value

• (Food for thought: what happens if
we don’t)

• Two options
• Leave the value and mark it as deleted
• Put another value in there: the last
value in the probe chain

77 / 118

Here is a proposal:

78 / 118

Hashtable deletes

Deletion strategy (assume uniqueness)
• deleting key k

• Hash k, find k, keep pointer to k
• Continue probing until you find the
end of the probe chain

• If the value at the end of the probe
chain has the same hash as k, move it
into k’s slot

• Otherwise, mark k as deleted
• (fill k’s slot with the next value that

hashes into the probe chain)

• Example: delete 23 first, delete 14 next

Illustration

9

27

12

23

5

17

14

5

45

9

Key Non-Key Attributes

12 78 1

21 55 2

16 9 34

84 17 69

Clustered Relation

61 45

71

42

20

83

Deleted

79 / 118

Bottom line: It is complicated!

80 / 118

Usefulness of Hash-Indices

• Remember: we said, hashjoins are good for equi-joins
• Because hash-tables allow the quick lookup of a specific key

• Not useful for inequality-joins
• Because hash-tables do not allow to find the adjacent values

81 / 118

Usefulness of Hash-Indices

• The same applies here:
• Persistent Hash-tables are great for hash-joins and aggregations (duh!)

• (assuming they are built on the join/aggregation key columns)

• They also help a lot to reduce the number of candidates if not all
columns are indexed (on equality selections):

• select * from customer where name = "holger"

• Not great for anything else:
• select * from customer where id between 5 and 8

83 / 118

Bitvectors

Definition
A sequence of 1-bit values indicating a boolean condition holding for the
elements of a sequence of values

• E.g., BV==7 ([4, 7, 11, 7, 7, 11, 4, 7]) = [0, 1, 0, 1, 1, 0, 0, 1]

• CPUs don’t work well with individual bits – they work in CPU words
• for simplicity let’s assume a word is 8-bit (in practice it is at least 32
bit)

• BV==7 ([4, 7, 11, 7, 7, 11, 4, 7]) =
128 ∗ 0 + 64 ∗ 1 + 32 ∗ 0 + 16 ∗ 1 + 8 ∗ 1 + 4 ∗ 0 + 2 ∗ 0 + 1 ∗ 1 = 89

84 / 118

Bitmap Indices

Definition
A collection of bitvectors on a column (one for each distinct value in that
column)

• Useful if there are few distinct values in a column
• Usually, the bitvectors are disjoint

• I.e., In every position/row, exactly one value is set to one

85 / 118

Bitmap Indexing

Visualization

5

3

9

9

9

5

3

9

Column

1

0

0

0

0

1

0

0

==5

0

1

0

0

0

0

1

0

==3

0

0

1

1

1

0

0

1

==9

Bitmap Index

86 / 118

Using Bitmaps

unsigned char** bitmaps; // a collection of bitmaps on column
void scanBitmap(byte* column, size_t inputSize, byte value) {

unsigned char* scannedBitmap = bitmapForValue(bitmaps, value);
for(size_t i = 0; i < inputSize / 8; i++) { // iterate over bitmap

if(scannedBitmap[i] != 0) {
unsigned char bitmapMask = 127; // binary 10000000
for(size_t j = 0; j < 8; j++) {

if((bitmapMask & scannedBitmap[i]) && column[i * 8 + j] == value)
writeOutput(column[i * 8 + j]);

bitmapMask >>= 1;
}

}
}

}

87 / 118

Bitmap Indexing – Usefulness

• Bitmaps reduce bandwidth need for scanning a column
• in the order of the size of the type of the column in bits

• Predicates can be combined using logical operators on bitvectors
• Arbitrary (boolean) conditions can be indexed by some systems

• BV>7,<12 ([4, 7, 11, 7, 7, 11, 4, 7]) =
128 ∗ 0 + 64 ∗ 1 + 32 ∗ 1 + 16 ∗ 1 + 8 ∗ 1 + 4 ∗ 1 + 2 ∗ 0 + 1 ∗ 1 = 125

• Special form: binned bitmaps

88 / 118

Binned Bitmaps

• Idea: Have n bitvectors, each with a predicate covering a different
part of the value domain

• For example (assuming our column type is byte),
• Bin 1: 0 through 7
• Bin 2: 8 through 20
• Bin 3: 20 to 255

• Make sure the conditions span the entire value domain
• Problem: Index cannot distinguish values in a bin (unless bin contains
only one value)

• Can only produce candidates
• False positives need to be eliminated

89 / 118

Binning

Let’s say our value distribution look like this. . .

0 200 400 600 800 1000

0

50

100

150

200

250

300

Value

C
o
u
n
t

90 / 118

Binning strategy: Equi-Width

Illustration

0 200 400 600 800 1000

0

1000

2000

3000

4000

5000

6000

7000

Value

C
o

u
n
t

• Simple to configure:
• Bin width:

(max(column)−min(column))
numberOfBins

• Limited use when indexing
non-uniformly distributed data

• Many false positives in highly
populated bins

• For example, 34% of values need to
be validated when checking for value
99, 99.5% of which are false
positives

91 / 118

Binning

Illustration

0 200 400 600 800 1000

0

500

1000

1500

2000

2500

Value

C
o

u
n
t

• Resilient against non-uniformly
distributed data

• False-positive rate independent is
value independent

• Bin construction is tricky:
• Basically: sort values and determine
quantiles

• Usually performed on sample

• Distributions may change over time
(which requires re-binning)

92 / 118

Run-Length-Encoding (for bitmaps)

Visualisation

0

1

1

1

1

1

0

1

0

1

0

1

1

5

1

1

RLE

• Sequentially traverse the vector
• Replace every run of consecutive
equal values with

• a tuple containing the value
(Run) and the number of
tuples (length)

• Works really well on high-locality
data

• Requires sequential scan to find
value at a specific position

93 / 118

Run-Length-Encoding with Length Prefix Summing

Visualisation

0

0

0

1

1

1

0

1

0

1

0

1

3

3

1

1

RLE

0

1

0

1

0

3

6

7

Exclusive
Prefix Sum

• Replaces scan with
binary search

94 / 118

All of these have a problem: limited updatability

95 / 118

Let’s discuss some indices that are updatable!

97 / 118

B-Trees

Basic Idea
• Databases are I/O bound (on disk)

• → Minimize the number of page I/O operations

• There are many equality lookups
• There are also many updates

• Hash-tables have nasty load-spikes on update

• Solution: Use a tree
• You know many binary trees: R/B-Trees, AVL, etc.
• Database trees use high-fanout trees to minimize page I/Os

98 / 118

B-Trees: The nodes

Anatomy of a B-Tree Node (n=4)

6: 8 15: 6Key

Payload

Child pointer

99 / 118

B-Trees

Definition
• A balanced tree with out-degree n (i.e., every node has n− 1 keys)
and the following property

• The root has at least one element
• Each non-root node contains at least

⌊
n−1
2

⌋
key/value pairs

Example (n=4)

6: 8 15: 6

1: 4 3: 2 4: 1 9: 3 10: 5 19: 9 20: 7

100 / 118

Maintaining balanced B-Trees

Insert
• Find the right leaf-node to insert (walk the tree) and insert the value
• If the node overflows, split the node in two halves
• Insert a new split element (the one in the middle of the split-node) in
the parent

• If the parent overflows, repeat the procedure on the parent node
• If the parent is the root, introduce a new root

101 / 118

Maintaining balanced B-Trees

Example

102 / 118

Maintaining balanced B-Trees

Under delete
• Find the value to delete

• if it is in a leaf node, delete it
• if it is in an internal node, replace it with the maximum leaf-node value
from the left child (removing the value from the leaf-node)

• If the affected leaf node underflows, rebalance the tree bottom up
• Try to obtain an element from a neighbouring node, make it the new
splitting key an move the splitting key into the node (be done on
success)

• On failure, the neighbouring node cannot be more than half-full and
can be merged with this one

• merge and remove the parent spliting key
• If parent underflows, rebalance from that one (bottom up)

103 / 118

Maintaining balanced B-Trees under delete

Example

104 / 118

Problems with B-trees

Access properties
• They can support range (between 5 and 17) scans but

• it is complicated (need to go up and down the tree)
• it causes many node traversals
• Node sizes are usually co-designed with page sizes
• Node traversals translate into page faults - we want to keep those to a
minimum

Implementation complexity
• Two kinds of node layouts or space waste

• Leaf pointers aren’t used
• Most of the data lives in leaf nodes

106 / 118

B+ − Trees

Idea
• Make range scans fast by

• keeping data only in the leafs (no up and down)
• linking one leaf to the next
• inner-node split values are replicas of leaf-node values

• Only have a single kind of node layout. . .
• . . . with different interpretation of the fields

107 / 118

B+ − Trees : Nodes

Anatomy of a B+ − TreeNode(n = 4)

6 15Key

Child pointer

6 9

3
Key

8

Payload

Inner Node Leaf Node

108 / 118

B+ − Trees

Definition
• Almost the same structure as B-Trees but

• All data is stored in the leaf nodes
• Inner nodes only contain copies of values from leaf-nodes
• Every leaf node (except the last contains a pointer to the next leaf
node)

Example

6 15

1: 4 3: 2 4: 1 6: 8 9: 3 10: 5 15: 6 19: 9 20: 7

109 / 118

B+ − Trees

Balancing
• Largely the same
• Deletes of inner-node split values imply replacement with new value
from leaf node

111 / 118

Foreign-Key Indices

In SQL
ALTER TABLE Orders ADD FOREIGN KEY (BookID_index) REFERENCES Book(ID);

• Foreign Key (FK) constraints specify that
• for every value that occurs in an attribute of a table
• there is exactly one value in the Primary Key (PK) column of another
table

• The DBMS needs to ensure that the constraint holds
• On insert/update, the DBMS needs to look up the primary key value
• Instead of storing the value, the DBMS could store a pointer to the
referenced Primary Key or tuple

112 / 118

Foreign-Key Indices

Order
Discount Partkey

.1 17
.01 4
.06 17
.07 9
.5 4

.25 4
.0 29

.15 9

.03 29

Part
Key Price
17 .8
29 .93
4 .10
9 .75

Index (in DSM)

0

2

0

3

2

2

1

3

1

partkey

.80

.93

.10

.75

price

.1
.01
.06
.07
.5
.25
.0
.15
.03

discount

Order Part

113 / 118

Use of Foreign-Key Indices

• The PK/FK constraint implies the number of join partners for every
tuple: 1

• Resolving the FK reference column directly yields the join partner
tuples

• FK indices are basically pre-calculated joins
• Not of much use for anything else

• However, many joins are PK/FK joins (because they stem from
normalization)

114 / 118

Use of Foreign-Key Indices

• Foreign-Key Indices have very few downsides
• Cause insignificant extra work under updates
• Do not cost significant space (a pointer per tuple)
• No extra query optimization effort: if they can be used, they should be

• SQL-Server does not implement them

115 / 118

Thank you

117 / 118

Provide feedback, please!

https://co572.pages.doc.ic.ac.uk/feedback/algorithmsandindices

118 / 118

Get the slides online

https://co572.pages.doc.ic.ac.uk/decks/AlgorithmsAndIndices.pdf

	Database algorithms
	Let's start with what you (should) know…
	What we will not cover
	Joins
	Enter the Join
	Join algorithms
	Indexing
	Indexing: Overview
	Hash-Indexing
	Bitmap Indexing
	B-Trees
	B+-Trees
	Foreign-Key Indices
	Provide feedback, please!

