
1 / 124

Welcome to CO 572: Advanced Databases

Holger Pirk

Slides as of 10/02/22 09:24

2 / 124

Today’s Lecture

Purpose: Figuring stuff out
• Who I am and what I am doing here
• Why this class exists

• Why do we need Data Management Systems
• Why should you learn about them?

• What we’re trying to achieve in this class
• What I will expect
• What you can expect
• Also: Some Admin
• Relational Algebra

4 / 124

Hi, I am Holger (not Dr. Pirk, please)

5 / 124

Three truths and one lie

• I am German
• I joined the department two years ago
• I am very into coffee
• I like data

6 / 124

What do Germans like above all other things – apologies for the
stereotype?

7 / 124

Efficiency!

8 / 124

Incidentally, that is why I teach this course!

10 / 124

This class is called "Advanced Databases"

11 / 124

I would prefer "Advanced Data Management" or "Database
Management Systems"

12 / 124

This raises a question:

13 / 124

What is a Database Management System?

14 / 124

Well, a System that manages a Database

So what are
• a Database
• Management
• a System

15 / 124

Database Management Systems

16 / 124

What is a Database?

Merriam Webster
Database A usually large collection of organized data

Data Factual information

In Context
• Pretty much any structured collection of data points/data items

• A relational table
• A set in your favorite programming language
• A vector in your favorite programming language
• A graph
• A stack of index cards

17 / 124

What is Management?

Merriam Webster
• the conducting or supervising of something
• to handle or direct with a degree of skill
• to work upon or try to alter for a purpose
• judicious use of means to accomplish an end

18 / 124

What is data management?

• Roughly, those parts of an application that "work with" data

19 / 124

Who needs data management?

Every single one of the Apps on my iPhone

let’s call them data-intensive

20 / 124

What is a data-intensive application?

• One that acquires, stores and/or processes a significant amount of
data

21 / 124

Claim: Data Management is hard!

22 / 124

Application 1

Szenario You work at a large hospital. At any given time, there are
800 in-patients each producing a continuous stream of data
(one sample per second): heartrate, blood-pressure,
temperature, etc. (five metrics). There are 200 doctors and
nurses, each producing a textual report every 10 minutes and
80 lab technicians producing a structured dataset (containing
say 10 metrics) every five minutes.

Requirements Every datapoint needs to be stored reliably. Once it is
stored, no data shall be lost (p < 0.001).

Objective Build an application that fulfills the requirements using only
technology that you understand (i.e., could build yourself).

23 / 124

Application 2

Szenario You are developing an interactive dashboard for a global retail
company. The company has acquired and stored 500GBs of
sales, inventory and customer records. The dashboard shall
provide interactive access to calculated statistics.

Requirements The system shall allow filtering of the dataset using
conjunctions of (in)equality predicates (e.g., country = "UK" and

sales > 500000). The system shall support the calculation of
sums of records as well as limiting the results to the top N
records (e.g., the 15 customers with the highest sales
volume). The response time for all queries shall be below 1
second.

Objective Build an application that fulfills the requirements using only
technology that you understand (i.e., could build yourself).

24 / 124

Let’s keep those in mind and discuss them in the Q&A

25 / 124

But one thing is clear: they are non-trivial

26 / 124

Fortunately, Data Management follows patterns!

27 / 124

Typical data-intensive application patterns

Online Transaction Processing
• Lots of small updates to a
persistent database

• Focus is on throughput
• ACID is key

Online Analytical Processing
• Running a single data
analysis task

• Focus is on latency
• Queries are ad-hoc

Reporting
• Running a many data
analysis tasks given a fixed
time budget

• Focus is on resource
efficiency

• Queries are known in
advance

Hybrid
Transactional/Analytical
Processing

• Small updates interwoven
with larger analytics

28 / 124

Thus, data management is outsourced to "Data Management
Systems"

30 / 124

What is a System?

Merriam Webster
• a regularly interacting or interdependent group of items forming a
unified whole

In Context
• Often made up from components,

• that interact
• to achieve a greater goal

• Usually applicable to many situations (i.e., generic)

31 / 124

Data Management System Components/Functionality

• Storage
• Data Ingestions
• Concurrency
• Data Analysis
• Standardized Programming Model
• User-Defined Functions
• Access Control
• Self-optimization
• (and counting)

32 / 124

Data-intensive application architecture

User

User Interface

Application Logic
(Middleware)

HTML, App

Python, Java, C++, Swift

Data(base)
Management System C or C++

CPU

Core

CoreCore

Core

33 / 124

Data management systems are a big market

• We are talking about a 50 billion dollar market (in 2017)
• That is only the pure sales volume of relational DBMSs
• add administration, tuning, application development, . . .

• Fun fact: SQLite is the second most-used piece software on the planet
(the first is zlib)

34 / 124

Data-intensive Applications vs. Management Systems?

• The boundary is blurry
• Applications

• Not generic
• Domain-specific
• Hard to generalize
• Often contain domain-specific optimizations and restrictions

• Experience shows that the cost of application-specific data
management outweighs the benefits in most cases

35 / 124

Data-intensive Applications vs. Management Systems?

Here is a proposed spectrum (from most to least "systemsy")
• Yelp
• A mobile app for geo-services
• A library to manage unordered collections of tagged coordinates
• A spatial data management library
• A relational database
• A block storage system

36 / 124

Non-functional requirements

Efficiency
Data Management Systems should not be (significantly) slower than
hand-written applications

Resilience
Data Management Systems should recover from problems (power outage,
hardware failure, software crashes, . . .)

Robustness
Data Management Systems should have predicatable performance: small
changes in a query should not cause major changes in performance

37 / 124

Non-functional requirements

Scalability
Data Management Systems should make efficient use of the available
resources. An increase of resources should cause an improvement of
performance.

Concurrency
Data Management Systems should serve multiple simultaneous clients
transparently (results should not be impacted).

38 / 124

And they actually do all that

39 / 124

But, if database do such a great job. . .

40 / 124

. . . why would I care about internals?

41 / 124

Why would I care about internals?

Why this class?
• If you ever happen to work on a DBMS (not very likely)
• To make you a kick-ass DBA (somewhat more likely)
• To apply data management techniques outside the field (extremely
likely)

• Bragging rights if you can implement a radix-partitioned in-memory
hash-join

• Some of this actually comes up if you interview at Google, Facebook,
Microsoft, etc.

• If you would like to work with me

42 / 124

Plus:

44 / 124

Performance: Physical & logical Data Model Separation

• Users
• don’t care about file format
• don’t care (much) about storage devices
• don’t care (much) about portability
• often send data in a fire and forget manner

• DBMSs
• separate external from internal model
• exploit degrees of freedom for performance

45 / 124

Transparent concurrency: Transactional Semantics

Isolated Run like you were alone on the system
Atomic Run completely or not at all

Consistent The interesting thing here is that there may be inconsistency
in between

Durable After the transaction commits, even power outage won’t
undo the transaction

46 / 124

Ease of use: Declarative Data analysis

• Every so often, I want to retrieve information about my data, e.g.,
• retrieve a single tuple
• calculate some statistic like "what is the total sales volume for each
country we do business in" right now

• generate a detailed report of all our business characteristics (sales,
hiring, procurement, . . .) over night

• train a model to predict future data

• Just describe your result, the system will generate it

47 / 124

But these seem natural! This is obviously how you do it!

48 / 124

Well. . .

49 / 124

Recall the architecture

User

User Interface

Application Logic
(Middleware)

HTML, App

Python, Java, C++, Swift

Data(base)
Management System C or C++

CPU

Core

CoreCore

Core

50 / 124

Technically, this is also where the filesystem sits!

51 / 124

Are data management systems filesystems?

52 / 124

Let’s discuss this in the Q&A!

53 / 124

What a Database Management System is not?

• A filesystem
• A runtime for your applications (though people have tried)

• some support user-defined functions
• some even have embedded webservers, middleware, . . .

• a horrible idea

• A place to store intermediate state

54 / 124

Why are databases a bad place for intermediate state?

55 / 124

Let’s discuss this in the Q&A!

57 / 124

What will this course look like

58 / 124

This course. . .

• . . . is an advanced databases class
• . . . is concerned with the internals and implementation of database
systems

• . . . contains useful knowledge whenever you have a data-intensive
application

• . . . will contain a fair number of coding examples (brush up you C++)
• . . . is not an introduction course
• . . . is not concerned with the use of data management systems

59 / 124

Things we will not cover (properly)

• Data Models
• Entity Relationship Modeling
• Schema Design
• SQL
• Database Management System (DBMS) Usage Models

• OLTP, OLAP, Reporting, . . .

• Map/Reduce as a programming model

60 / 124

Some Admin stuff

• Course is taught in two halves
• First halve on single-node databases (taught by your’s truly)
• Second halve on distributed databases (taught by Peter McBrien)

• Register for this course (at level 2)!!!
• Bad things will happen if you don’t
• Ask your cohort admin person how to do it

61 / 124

My Plan for this course

Plans are useless but planning is indispensable – Dwight Eisenhower

62 / 124

My Plan for the first half of this course

A "proper" flipped classroom approach
• I will release a video every week on Monday (might be earlier)

• roughly one two-hour lecture block in length (ca. 100 minutes)
• We will have an interactive session on Thursday

• I expect that you have watched the video by that time
• We will have 50 minutes of Q&A
• and 50 minutes of tutorial

63 / 124

Coursework

• There will be two assignments
• Indexing & Query Processing in pairs of two (with me)

• This will include our programming competition (sponsored by
Snowflake)

• Distributed data processing (with Peter McBrien)

• Exam in the end
• Relevant is what is discussed in class

64 / 124

Things I assume you know

• CO 130, i.e., knowledge about the use of a database
• CO 120, knowledge about algorithms & data structures

• Arrays, linked lists, trees, heaps, . . .
• Sorting, hashing, binary searching, graph/tree-traversal

• CO 112 & 113, i.e., knowledge about the workings of hardware
components

• Main memory, CPUs, disks, caches, multicore, . . .
• CO 275, i.e., Programming C++

• Programming for one of the two coursework assignments
• Honesty when preparing coursework

• Don’t try me!

65 / 124

Books

Fundamentals of Database Systems
Ramez Elmasri, Shamkant Navathe
Sixth edition, Pearson new international edition., Pearson,

Database Systems: The Complete Book
Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom
2nd ed., Pearson Education

Database Systems: Practical Approach to Design, Implementation,
and Management
Thomas M. Connolly, Carolyn E. Begg
Sixth edition, Global edition., Pearson Education Limited

66 / 124

Communication

• Zoom for remote participation in interactive sessions
• https://co572.pages.doc.ic.ac.uk
• Edstem for online discussion

https://co572.pages.doc.ic.ac.uk

67 / 124

Remember

• Register for this course
• at Level 2!!!

69 / 124

Before we start

70 / 124

A note on performance

71 / 124

A note on performance

• Much of this course is concerned with performance: interpretation,
prediction and optimization

• Why?
• Efficiency is important in practice (think energy, money, time)
• Understanding performance is even more important (you are here to
learn)

72 / 124

Database performance internals: an example

What Resource bounds this query’s performance

Vectorized Partition & Merge

Partition & Merge

Vectorized

OriginalParallel
Scanning

50

Qualifying Tuples/Pivot

0 100

2.0

4.0

6.0

8.0

10

0.0

11

W
al

lc
lo

ck
 ti

m
e

in
 s

(a) Desktop

50

Qualifying Tuples/Pivot

0 100

1.0

2.0

3.0

4.0

0.0

4.2

W
al

lc
lo

ck
 ti

m
e

in
 s

(b) Workstation

50

Qualifying Tuples/Pivot

0 100

1.0

2.0

3.0

4.0

5.0

0.0

5.9

W
al

lc
lo

ck
 ti

m
e

in
 s

(c) Server

50

Qualifying Tuples/Pivot

0 100

1.0

2.0

3.0

4.0

5.0

0.0

5.9

W
al

lc
lo

ck
 ti

m
e

in
 s

(d) High-End Server

Figure 9: Single Threaded Performance

Predicated

Predicated in Register Refined Partition & Merge

Vectorized Refined Partition & Merge

50

Qualifying Tuples/Pivot

0 100

2.0

4.0

6.0

8.0

10

0.0

11

W
al

lc
lo

ck
 ti

m
e

in
 s

(a) Desktop

50

Qualifying Tuples/Pivot

0 100

0.20

0.40

0.60

0.80

1.0

1.2

1.4

0.0

1.5
W

al
lc

lo
ck

 ti
m

e
in

 s

(b) Workstation

50

Qualifying Tuples/Pivot

0 100

0.50

1.0

1.5

2.0

0.0

2.6

W
al

lc
lo

ck
 ti

m
e

in
 s

(c) Server

50

Qualifying Tuples/Pivot

0 100

0.50

1.0

1.5

2.0

0.0

2.6

W
al

lc
lo

ck
 ti

m
e

in
 s

(d) High-End Server

Figure 10: Multi Threaded Performance

73 / 124

Database internals: an example

Option A
CPU!

Option B
Memory!

Option C
Disk!

Option D
What?

74 / 124

Let’s discuss this in the Q&A

75 / 124

Database internals: another example

What is this Workload’s Isolation Level

Effect&of&long&read/only&transacAons

Workload:)
•  Short)txns)10R+)2W)
•  Long)txns:)R)10%)of)rows)

24)threads)in)total)
• X)threads)running)short)txns)
•  24?X)threads)running)long)
txns))

Paul)Larson,)Nov)2013) 26)

•  TradiZonal)locking:)update)performance)collapses)
• MulZversioning:))))))update)performance)per)thread)unaffected))

76 / 124

Database internals: another example

Option A
Repeatable Read!

Option B
Serializable!

Option C
Read Committed!

Option D
I Have no idea!

77 / 124

I have no idea :-)

78 / 124

Takeaways

• Claim: If you can explain (and predict) its performance, you have
understood a system

• You (probably) know how to use a database system
• You (probably) don’t know everything about how it works
• I certainly don’t
• But I know a lot of people who do – ASK!!!
• If nobody knows, it is research (see me!)

79 / 124

Enough banter! Let’s get started!

81 / 124

Preliminaries: Vectors, tuples, bags & sets

Vector an ordered collection of objects of the same type
Tuple an ordered collection of objects of different type
Bag an unordered collection of objects of the same type
Set an unordered collection of unique objects of the same type

82 / 124

Preliminaries: Schemas

The definition of the attributes of the tuples in your relations (duh)
create table review (stars int, comment varchar(1024), user int);

But also integrity contraints (uniqueness, keys, foreign-keys)
alter table review add foreign key(user) references user(name);

Some people distinguish external and internal schema
• The idea of internal schemas is misleadingly simplistic

• there may not even be a schema

83 / 124

The Purpose of Relational Algebra

A logical representation of relational operations
• Used to define the semantics of operations
• Used for logical optimization
• Not actually all that useful for end-users
• Not actually how (most) systems evaluate queries

84 / 124

Relations

From the Codd paper

Relations are almost sets of tuples

85 / 124

Let’s get coding: Implementing Relations

A first shot
template <typename... types> //
struct Relation {

set<tuple<types...>> data;
array<string, sizeof...(types)> schema;

Relation(array<string, sizeof...(types)> schema, set<tuple<types...>> data)
: schema(schema), data(data) {}

};

86 / 124

Implementing Relations

Creating a relation
auto createCustomerTable() {

Relation<int, string, string> customer(//
{"ID", "Name", "ShippingAddress"}, //
{{1, "holger", "180 Queens Gate"},
{2, "Sam", "32 Vassar Street"},
{3, "Peter", "180 Queens Gate"}});

return customer;
}

87 / 124

Making relations composable

Exposing type information
template <typename... types> //
struct Relation {

using OutputType = tuple<types...> ;
set<tuple<types...>> data;
array<string, sizeof...(types)> schema;
Relation(){};
Relation(array<string, sizeof...(types)> schema, set<tuple<types...>> data)

: schema(schema), data(data) {}
};

89 / 124

Relational Expressions

Nomenclatures
• An expression in relational algebra is composed from operators
• I will often refer to an expression as a (logical) plan
• Cardinality is the number of tuples in a set

Handy properties
• Set-based

• Order-invariant and duplicate eliminated
• Relational algebra is closed

• Every operator produces a relation as output
• Every operator accepts one or two relations as input
• This simplifies the composition of operators into expressions

• Note, that expressions can still be invalid

90 / 124

Relational Operators

Implementation
template <typename... types> struct Operator : public Relation<types...> {};

91 / 124

Relational Operators

A minimal set
• Project
• Select
• Cross (Carthesian) Product
• Union
• Difference

Not included
• Intersection

92 / 124

Project π

Intuitive semantics
• Extract one or multiple attributes from a relation
• Preserve relational semantics
• Changes the schema

Customer
ID Name ShippingAddress
1 Holger 180 Queens Gate
2 Sam 32 Vassar Street
3 Peter 180 Queens Gate

πNameCustomer
Name
Holger
Sam
Peter

πShippingAddressCustomer
ShippingAddress
180 Queens Gate
32 Vassar Street

93 / 124

Project π

Quick Quiz: What is the cardinality of the output of a projection
• It can only be determined by evaluating it
• Cardinality of the input
• I don’t know

Quick Quiz: What is the upper bound for the cardinality of the
output of a project

• It can only be determined by evaluating it
• Cardinality of the input
• I don’t know

94 / 124

Project π

Implementation
template <typename InputOperator, typename... types>
struct Project : public Operator<types...> {

InputOperator input;
set<pair<string, string>> projections; // attribute mappings
Project(InputOperator input, set<pair<string, string>> projections)

: input(input), projections(projections) {}
};

Example
void example1() {

auto customer = createCustomerTable();
auto p = Project<decltype(customer), string>(customer, {{"Name", "customerName"}});

}

95 / 124

Project π, with functions

Intuitive semantics
• Extract one or multiple attributes from a relation and perform a scalar
operation on them

Implementation
#include <variant>
template <typename InputOperator, typename... outputTypes>
struct Project : public Operator<outputTypes...> {

InputOperator input;

function<tuple<outputTypes...>(typename InputOperator::OutputType)> projectionFunction;
Project(InputOperator input,

function<tuple<outputTypes...>(typename InputOperator::OutputType)> //
projectionFunction)

: input(input), projectionFunction(projectionFunction) {}
};

96 / 124

Project π, with functions

Example
void example2() {

auto customer = createCustomerTable();
auto p = Project<decltype(customer), string>(customer, //

[](auto input) { return get<1>(input); });
}

97 / 124

Project π, for real

Implementation
#include <variant>
template <typename InputOperator, typename... outputTypes>
struct Project : public Operator<outputTypes...> {

InputOperator input;

variant<function<tuple<outputTypes...>(typename InputOperator::OutputType)>,
set<pair<string, string>>>

projections; // attribute mappings
Project(InputOperator input,

function<tuple<outputTypes...>(typename InputOperator::OutputType)> projections)
: input(input), projections(projections) {}

Project(InputOperator input, set<pair<string, string>> projections)
: input(input), projections(projections) {}

};

98 / 124

Project π, for real

Example
void example3() {

auto customer = createCustomerTable();
auto p1 = Project<decltype(customer), string>(customer, //

[](auto input) { return get<1>(input); });
auto p2 = Project<decltype(customer), string>(customer, {{"Name", "customerName"}});

}

99 / 124

Select σ

Intuitive Semantics
• Produce a new relation containing input tuples that satisfy a condition
• Does not change the schema
• Changes cardinality (i.e., the number of tuples in a relation)

OrderedItem
OrderId BookID

1 1
1 2
2 1
3 3

σBookID=1OrderedItem
OrderId BookID

1 1
2 1

100 / 124

Select σ

Quick Quiz: What is the cardinality of the output of a selection
• It can only be determined by evaluating it
• Cardinality of the input
• I don’t know

Quick Quiz: What is the upper bound for the cardinality of the
output of a select

• It can only be determined by evaluating it
• Cardinality of the input
• I don’t know

101 / 124

Select σ

Implementation
enum class Comparator { less, lessEqual, equal, greaterEqual, greater };

struct Column {
string name;
Column(string name) : name(name) {}

};
using Value = variant<string, int, float>;

struct Condition {
Column leftHandSide;
Comparator compare;
variant<Column, Value> rightHandSide;
Condition(Column leftHandSide, Comparator compare, variant<Column, Value> rightHandSide)

: leftHandSide(leftHandSide), compare(compare), rightHandSide(rightHandSide) {}
};

102 / 124

Select σ

Example
void example4() {

auto c2c = Condition(Column("Name"), Comparator::equal, Column("ShippingAddress"));
auto c2v = Condition(Column("Name"), Comparator::equal, Value("ShippingAddress"));

}

103 / 124

Select σ

Implementation
template <typename InputOperator>
struct Select : public Operator<typename InputOperator::OutputType> {

InputOperator input;
Condition condition;
Select(InputOperator input, Condition condition)

: input(input), condition(condition){};
};

104 / 124

Select σ

Example
void example5() {

auto customer = createCustomerTable();
auto c2v = Condition(Column("Name"), Comparator::equal, Value("Holger"));
auto p1 = Select<decltype(customer)>(customer, c2v);

}

105 / 124

Cross (Carthesian) Product ×

Intuitive Semantics
• Takes two inputs
• Produce a new relation by combining every tuple from the left with
every tuple from the right

• Changes the schema

106 / 124

Cross (Carthesian) Product ×

Order
ID CustomerID
1 1
2 2
3 3

OrderedItem
OrderId BookID

1 1
1 2
2 1
3 3

Order ×OrderedItem
ID CustomerID OrderId BookID
1 1 1 1
1 1 1 2
1 1 2 1
1 1 3 3
2 2 1 1
2 2 1 2
2 2 2 1
2 2 3 3
3 3 1 1
3 3 1 2
3 3 2 1
3 3 3 3

107 / 124

Cross (Carthesian) Product ×

Implementation
template <typename LeftInputOperator, typename RightInputOperator>
struct CrossProduct : public Operator<Concat<typename LeftInputOperator::OutputType,

typename RightInputOperator::OutputType>> {
LeftInputOperator leftInput;
RightInputOperator rightInput;
CrossProduct(LeftInputOperator leftInput, RightInputOperator rightInput)

: leftInput(leftInput), rightInput(rightInput){};
};

108 / 124

Cross (Carthesian) Product ×

Quick Quiz: What is the cardinality of the output of a cross product
• It can only be determined by evaluating it
• Cardinality of left input plus cardinality of right input
• Cardinality of left input times cardinality of right input
• I don’t know

109 / 124

Composing operators

Rules
• Since relational algebra is closed, operators can be combined as long
as their signature is respected

• Cross products take two inputs
• Selections and Projections take one

Example
πBookID(σOrder.ID==OrderedItem.OrderID(Order ×OrderedItem))

110 / 124

Composing operators

Implementation
int main() {

Relation<int, int> order({"ID", "CustomerID"}, {{1, 1}, {2, 2}, {3, 3}});
Relation<int, int> orderedItem({"OrderID", "BookID"}, {{1, 1}, {1, 2}, {2, 1}, {3, 3}});
auto plan = //

Project(//
Select(//

CrossProduct(order, orderedItem), //
Condition(Column("Order.ID"), Comparator::equal, //

Column("OrderedItem.OrderID"))), //
{{"OrderedItem.BookID", "OrderedItem.BookID"}});

}

111 / 124

Union ∪

Intuitive Semantics
• Produce a new relation from two relations containing any tuple that is
present in one of the inputs

• Does not change the schema
• Requires input schema compatibility

• Changes cardinality (i.e., the number of tuples in a relation)

σName=HolgerCustomer
ID Name ShippingAddress
1 Holger 180 Queens Gate

σName=SamCustomer
ID Name ShippingAddress
2 Sam 32 Vassar Street

σName=SamCustomer ∪
σName=HolgerCustomer

ID Name ShippingAddress
1 Holger 180 Queens Gate
2 Sam 32 Vassar Street

112 / 124

Union ∪

Implementation
template <typename LeftInputOperator, typename RightInputOperator>
struct Union : public Operator<typename LeftInputOperator::outputType> {

LeftInputOperator leftInput;
RightInputOperator rightInput;

Union(LeftInputOperator leftInput, RightInputOperator rightInput)
: leftInput(leftInput), rightInput(rightInput){};

};

Can we ensure schema compatibility here?

113 / 124

Quick quiz: Union ∪

Quick Quiz: What is the cardinality of the output of a union
• It can only be determined by evaluating it
• Cardinality of left input plus cardinality of right input
• Cardinality of left input times cardinality of right input
• I don’t know

Quick Quiz: What is the upper bound for the cardinality of a union
• It can only be determined by evaluating it
• Cardinality of left input plus cardinality of right input
• Cardinality of left input times cardinality of right input
• I don’t know

114 / 124

Difference −

Intuitive Semantics
• Produce a new relation from two relations containing any tuple that is
present in the first but not the second input

• Does not change the schema
• Requires input schema compatibility

• Changes cardinality (i.e., the number of tuples in a relation)

Customer
ID Name ShippingAddress
1 Holger 180 Queens Gate
2 Sam 32 Vassar Street
3 Peter 180 Queens Gate

σName=SamCustomer
ID Name ShippingAddress
2 Sam 32 Vassar Street

Customer − σName=SamCustomer
ID Name ShippingAddress
1 Holger 180 Queens Gate
3 Peter 180 Queens Gate

115 / 124

Difference −

Implementation
template <typename LeftInputOperator, typename RightInputOperator>
struct Difference : public Operator<typename LeftInputOperator::outputType> {

LeftInputOperator leftInput;
RightInputOperator rightInput;
Difference(LeftInputOperator leftInput, RightInputOperator rightInput)

: leftInput(leftInput), rightInput(rightInput){};
};

Can we ensure schema compatibility here?

116 / 124

Grouped Aggregation Γ

Intuitive Semantics
• Produce a new relation from one input by grouping together tuples
that have equal values in some attributes and aggregate others

• The groups are defined by the set of grouping attributes
• This set can be empty

• The aggregates are defined by the set of aggregations, i.e., triples of
• the input attribute
• the aggregation function: min, max, avg, sum, count
• the output attribute

• Changes schema & cardinality

Customer
ID Name ShippingAddress
1 Holger 180 Queens Gate
2 Sam 32 Vassar Street
3 Peter 180 Queens Gate

Γ((ShippingAddress),((ID,count,c)))Customer

ShippingAddress c
32 Vassar Street 1
180 Queens Gate 2

117 / 124

Grouped Aggregation Γ

Implementation
enum class AggregationFunction { min, max, sum, avg, count };

template <typename InputOperator, typename... Output>
struct GroupedAggregation : public Operator<Output...> {

InputOperator input;
set<string> groupAttributes;
set<tuple<string, AggregationFunction, string>> aggregations;
GroupedAggregation(InputOperator input, set<string> groupAttributes,

set<tuple<string, AggregationFunction, string>> aggregations)
: input(input), groupAttributes(groupAttributes), aggregations(aggregations){};

};

118 / 124

Grouped Aggregation Γ

Example
void example6() {

auto customer = createCustomerTable();
GroupedAggregation<decltype(customer), int>(customer, {"ShippingAddress"},

{{"ID", AggregationFunction::count, "c"}});
}

119 / 124

Top-N T

Intuitive Semantics
• Produce a new relation from one input selecting the tuples with the N
greatest (w.l.o.g.) values with respect to an attribute

• The top-n predicate is a single attribute

• Changes cardinality, maintains schema

Customer
ID Name ShippingAddress
1 Holger 180 Queens Gate
2 Sam 32 Vassar Street
3 Peter 180 Queens Gate

T(2,ID)Customer

ID Name ShippingAddress
2 Sam 32 Vassar Street
3 Peter 180 Queens Gate

120 / 124

Top-N T

Implementation
template <typename InputOperator>
struct TopN : public Operator<typename InputOperator::OutputType> {

InputOperator input;
size_t N;
string predicate;
TopN(InputOperator input, size_t N, string predicate)

: input(input), N(N), predicate(predicate){};
};

121 / 124

Top-N T

Example
void example7() {

auto customer = createCustomerTable();
TopN<decltype(customer)>(customer, 2, "id");

}

122 / 124

Thank You!

123 / 124

Provide feedback, please!

https://co572.pages.doc.ic.ac.uk/feedback/introduction

124 / 124

Get the slides online

https://co572.pages.doc.ic.ac.uk/decks/Introduction.pdf

	About me
	About this class
	Data Management Systems
	Data Management Systems provide some ingenious solutions
	Let's take a break to do some admin stuff!
	Back to Data Management
	Relational Algebra – Nuts and Bolts
	Relational Operators

