
1 / 100

Query Processing Models

Holger Pirk

Slides as of 10/02/22 09:24



3 / 100

Purpose of this lecture

What you know
• How data is stored
• How queries are logically represented

Today, you will
• learn How queries are represented physically (i.e., for the purpose of
execution)

• learn how they are executed
• understand tradeoffs of processing models



4 / 100

Processing Models

What is a processing model?
The mechanism used to connect different operators

Why does it matter
• Different storage models optimizer for different bottlenecks:

• Data Access
• CPU
• Query compilation time
• . . .



5 / 100

Recall:



6 / 100

Preliminaries

Tables
using Tuple = vector<variant<int, float, string>>;
using Table = vector<Tuple>;

Storage Manager Interface
class StorageManager {

map<string, Table> catalog;

public:
Table& getTable(string name) { return catalog[name]; };

};



7 / 100

Function Objects

Call them Lambdas, Function pointers, etc.
• They are pieces of code that are treated like data

• They are basically pointers to an instruction

• You can assign them to variables. . .
• . . . you can pass them as parameters to other functions. . .
• . . . and you can evaluate/invoke/call them with arguments. . .
• . . . and they will return a value

Python Syntax
aggregate = lambda v, t : v + t[0]

C++ Syntax
function<int(int, Tuple)> aggregate = [](int v, Tuple t) { return v + (int)t[0]; };



9 / 100

First thing to note: Volcano is a cool name!



10 / 100

Volcano Processing

• Volcano was a system that was very influential
• Built in the 80s
• Lots of focus on design practices – less on performance

• It had a lot of components:
• The cascades query optimizer
• A non-relational physical algebra
• A query processing model

• Let’s talk about that



11 / 100

Volcano Design Goals

• Flexibility
• Clean Design
• Maintainability
• Developer Productivity
• A fair bit of tunability



12 / 100

Volcano Processing

Operators [Graefe: Query Evaluation Techniques for Large Databases]

. . .



13 / 100

Volcano Processing

The operator interface
struct Operator {

virtual void open() = 0;
virtual optional<Tuple> next() = 0;
virtual void close() = 0;

};

Implementation details
• Operators are connected using pointers

• I will use the unique_ptr smart pointer



15 / 100

Scan

Purpose
Read a Table and return the contained tuples one by one

Implementation
struct Scan : Operator {

Table input;
size_t nextTupleIndex = 0;
Scan(Table input) : input(input){};
void open(){};
optional<Tuple> next() {

return nextTupleIndex < input.size() //
? input[nextTupleIndex++]
: {};

};
void close(){};

};

• First observation: operators are stateful



16 / 100

Projection

Purpose
Transform a tuple into another tuple using a projection function

Implementation
struct Project : Operator {

using Projection = function<Tuple(Tuple)>;
Projection projection;
unique_ptr<Operator> child;
void open() { child->open(); };
optional<Tuple> next() { return projection(child->next()); };
void close() { child->close(); };

};



17 / 100

Selection

Purpose
Return all tuples that satisfy a boolean predicate

Implementation
struct Select : Operator {

using Predicate = function<bool(Tuple)>;
unique_ptr<Operator> child;
Predicate predicate;

Select(unique_ptr<Operator> child, Predicate predicate)
: child(move(child)), predicate(predicate){};

void open() { child->open(); };
optional<Tuple> next() {

for(auto dandidate = child->next(); dandidate.has_value; dandidate = child->next())
if(predicate(dandidate))

return dandidate;
return {};

};
void close() { child->close(); };

};



18 / 100

Let’s do one that has two inputs



19 / 100

Union

Purpose
Return all tuples from one child followed by all tuples from the other

Implementation
struct Union : Operator {

unique_ptr<Operator> leftChild;
unique_ptr<Operator> rightChild;
void open() {

leftChild->open();
rightChild->open();

};
optional<Tuple> next() {

auto candidate = leftChild->next();
return candidate.has_value ? candidate : rightChild->next();

};
void close() {

leftChild->close();
rightChild->close();

};
};



20 / 100

Let’s do one that has two inputs and is challenging



21 / 100

Difference

Purpose
Read and buffer all tuples from the right side. After that, read all tuples
from the left and return those that are not in the buffered right side.



22 / 100

Difference

Implementation
struct Difference : Operator {

unique_ptr<Operator> leftChild;
unique_ptr<Operator> rightChild;
vector<Tuple> bufferedRight;

void open() { // Read all tuples from one side into a buffer
leftChild->open();
rightChild->open();
for(auto rightTuple = rightChild->next(); rightTuple.has_value; //

rightTuple = rightChild->next())
bufferedRight.push_back(rightTuple);

};
optional<Tuple> next() {

for(auto nextCandidate = leftChild->next(); nextCandidate.has_value; //
nextCandidate = leftChild->next()) {

if(find(bufferedRight.begin(), bufferedRight.end(), nextCandidate) //
== bufferedRight.end())

return nextCandidate;
}
return {};

};
void close();

};



23 / 100

Difference is interesting. . .



24 / 100

. . . it forces me to read all inputs from one side before working on the
other



25 / 100

We have a name for that:



26 / 100

a pipeline breaker



27 / 100

Pipeline Breakers

Definition
• A pipeline breaker is an operator that produces the first (correct)
output tuple only after all input tuples from one of the sides have
been processed



28 / 100

Cross Product

Purpose
Combine every tuple on the left with every tuple on the right.



29 / 100

Cross Product Implementation

First implementation. . .
struct Cross : Operator {

unique_ptr<Operator> leftChild;
unique_ptr<Operator> rightChild;
Tuple currentLeftTuple{};
vector<Tuple> bufferedRightTuples;
size_t currentBufferedRightOffset = 0;
void open() {

leftChild->open();
rightChild->open();
currentLeftTuple = leftChild->next();
for(auto rightTuple = rightChild->next(); rightTuple.has_value; //

rightTuple = rightChild->next())
bufferedRightTuples.push_back(rightTuple);

};
optional<Tuple> next(); // implementation on the next slide
void close() {

leftChild->close();
rightChild->close();

};
};



30 / 100

Cross Product Implementation

. . . first implementation
Tuple Cross::next() {

if(currentBufferedRightOffset == bufferedRightTuples.size()) {
currentBufferedRightOffset = 0;
currentLeftTuple = leftChild->next();

}
if(!currentLeftTuple.has_value())

return {};
auto currentRightTuple = bufferedRightTuples[currentBufferedRightOffset++];
return currentLeftTuple.concat(currentRightTuple);

}



31 / 100

This is clearly breaking the pipeline!



32 / 100

Can we do that without breaking the pipeline?



33 / 100

Pipelined Volcano Cross Product

Implementation. . .
struct Cross : Operator {

unique_ptr<Operator> leftChild;
unique_ptr<Operator> rightChild;
tuple currentLeftTuple{};
vector<tuple> bufferedRightTuples;
size_t currentBufferedRightOffset = 0;
void open() {

leftChild->open();
rightChild->open();
currentLeftTuple = leftChild->next();

};
tuple next();
void close() {

leftChild->close();
rightChild->close();

};
};



34 / 100

Pipelined Volcano Cross Product

. . . implementation
tuple Cross::next() {

auto currentRightTuple = rightChild->next();
if(currentRightTuple.has_value())

bufferedRightTuples.push_back(currentRightTuple);
if(currentBufferedRightOffset == bufferedRightTuples.size()) {

currentBufferedRightOffset = 0;
currentLeftTuple = leftChild->next();

}
return currentLeftTuple.concat(bufferedRightTuples[currentBufferedRightOffset++]);

};



35 / 100

This is not breaking the pipeline!



36 / 100

Volcano Cross Product

Bottom line
• Whether operators are pipeline breakers depends on how they are
implemented

• Some do not have pipelineable implementations
• Let’s look at one of those. . .



37 / 100

Gouped Aggregation

Purpose
Group all tuples that are equal (given a projection function) and calculate
one or more per-group aggregates

Implementation
using SupportedDatatype = variant<int, float>;
using AggregationFunction = function<SupportedDatatype(SupportedDatatype, Tuple)>;



38 / 100

Grouped Aggregation

Implementation
struct GroupBy : Operator {

unique_ptr<Operator> child;
vector<optional<Tuple>> hashTable; // size is magically known
Projection getGroupKeys; // to extract the attributes we are grouping by (can be inlined)
vector<AggregationFunction> aggregateFunctions;

void open();

int outputCursor = 0;
optional<Tuple> next() {

while(outputCursor < hashTable.size()) {
auto slot = hashTable[outputCursor++];
if(slot.has_value())

return slot.value();
}
return {};

};
void close() { child->close(); }

};



39 / 100

Grouped Aggregation

Implementation (assuming single attribute groups)
size_t nextSlot(size_t value);
size_t hashTuple(Tuple t);
void GroupBy::open() {

child->open();
auto inputTuple = child->next();
while(inputTuple.has_value) {

auto slot = hashTuple(inputTuple[groupAttribute]);
while(hashTable[slot].has_value && //

inputTuple[groupAttribute] != hashTable[slot][0])
slot = nextSlot(slot);

if(!hashTable[slot].has_value) { // create new entry
hashTable[slot][0] = {inputTuple[groupAttribute]};
hashTable[slot].resize(aggregateFunctions.size() + 1)

}
for(size_t j = 0; j < aggregateFunctions.size(); j++)

hashTable[slot].data[j + 1] =
aggregateFunctions[j](hashTable[slot][j + 1], inputTuple);

inputTuple = child->next();
}

}



40 / 100

Using Volcano

Implementation
void moreInterestingQuery() {

Table input{{1l, "Holger", "180 Queens Gate"},
{2l, "Sam", "32 Vassar Street"},
{3l, "Peter", "180 Queens Gate"}};

auto plan = //
make_unique<GroupBy>( //

make_unique<Select>( //
make_unique<Scan>(input), //
[](auto t) { return t[2] == string("180 Queens Gate"); }), //

[](auto t) { return Tuple{t[1]}; }, //
vector<AggregationFunction> //
{[](auto v, auto t) { return long(v) + 1; }});

plan->open();
for(auto t = plan->next(); t; t = plan->next())

cout << t << endl;
}



41 / 100

Advantages of Volcano

Elegant and simple implementation
• Our implementation is roughly 200 lines
• Good object-oriented design (Robert Chatley would be proud)
• Extensible

• Adding new operators is easy (just adhere to the interface)
• Takes advantage of the underlying language

• Good I/O Behavior:
• Tuples are consumed as soon as they are produced



42 / 100

Pipelining

A plan with highlighted pipeline fragments

⨝order.customer_id = customer.id

σpriority=“urgent” Customer (10 K)

σstatus=“pending”

Order (5 Million)

Probe

Γmarket, min(order.data)

⨝customer.nation_id = nation.id

Nation (100)

BuildProbe

Build



43 / 100

Estimating buffer I/O operations in Volcano. . .

Scans read all pages of the relation
• number of pages calculated as we did in the Storage session

Pipeline Breakers: Writing intermediate buffers (open phase)
• If buffer and all other buffers in the fragment fit in memory: No I/O
• Otherwise:

• buffer accessed sequentially: number of occupied pages (per pass)
• buffer accessed randomly/out-of-order: one page access per tuple



44 / 100

. . . Estimating buffer I/O operations in Volcano. . .

⨝order.customer_id = customer.id

σpriority=“urgent” Customer (10 K)

σstatus=“pending”

Order (5 Million)

Probe

Γmarket, min(order.data)

⨝customer.nation_id = nation.id

Nation (100)

BuildProbe

Build



45 / 100

. . . Estimating buffer I/O operations in Volcano. . .

Pipeline Breakers: Reading intermediate buffers (next phase)
• If all buffers in the fragment (combined) fit in memory: No I/O
• if not, hash-probes: one page access per accessed tuple
• Otherwise: number of occupied pages (per pass)

Others
• No I/O



46 / 100

. . . Estimating buffer I/O operations in Volcano

⨝order.customer_id = customer.id

σpriority=“urgent” Customer (10 K)

σstatus=“pending”

Order (5 Million)

Probe

Γmarket, min(order.data)

⨝customer.nation_id = nation.id

Nation (100)

BuildProbe

Build



47 / 100

How do we know if the buffers fit in memory?

Rules
• Buffers need to hold data according to their algorithm & input

• Nested loop buffers and sorted relations: exactly their input (number of
tuples * tuple size)
• Assume spanned pages

• Hashtables are overallocated by a factor (assume two if not known)
• We assume perfect knowledge about the input and output cardinalities
(a.k.a., an oracle)
• Input buffer size: input cardinality times tuple size
• Output buffer size: output cardinality times tuple size

• We know the memory/buffer pool size (may be given in bytes or in the
number of pages)



48 / 100

Let’s estimate some stuff!



49 / 100

Example: estimating buffer I/O operations in Volcano

Query

σ[1] > 250

Customer

Γ[1], count

Customers (assuming spanned pages)
• 10.000 Tuples
• attributes: id, name, address, nation,
phone, accountNumber

• id, nation, phone, accountNumber are int32
• name, address are dictionary-compressed (int32
keys)

Query Parameters
• Selection Selectivity: 30%, Grouping cardinality:
9

• Hashtable Overallocation Factor: 2
• Buffer Pool: 512KB, Page Size: 64 Byte



50 / 100

Example calculation

CustomerTableSize = 6 (*Attributes*) * 4 (*Bytes*) * 10000 (* tuples *) ;
CustomerTablePages = Ceiling[CustomerTableSize / 64] (*Bytes*) ; (* equation for spanned

pages *)↪→
CustomerScanCosts = CustomerTablePages;

GroupingCardinality = 9; (* Given *)
NumberOfAttributesInGroupingTable = 2; (* From plan *)

GroupingHashTableSize = Ceiling[2 * GroupingCardinality * NumberOfAttributesInGroupingTable
* 4 (* Bytes *) ]; (* = 144 Bytes*)↪→

GroupingHashTableSize < BufferPoolSize; (* can be ignored *)

TotalPageIO == CustomerScanCosts

TotalPageIO == 3750



52 / 100

CPU Efficiency

What is the cost of a (sequential) memory access
• Back of the envelope calculation

• My MacBook has 37.5 GB/s memory bandwidth and 4 cores @ 2.9 GHz
• 9.375 GB/s per core
• 3.23 Bytes per cycle (let’s say about one integer)

• We better make sure we can process one integer per cycle



53 / 100

Function pointers

How they are evaluated by a CPU (roughly)
• The CPU stores the current instruction pointer (the call)
• The arguments are put on the execution stack
• The CPU instruction pointer is set to the address of the first
instruction of the function code
• This is called a Jump (JMP)

• The function is executed until it returns (there is a special return
instruction)

• The instruction pointer is set to the instruction after the call



54 / 100

CPU execution pipelining (simplified)

Modern CPUs. . .
• . . . execute instructions in stages. . .
• . . . like fetch, decode, execute, memory read, write result.
• Instructions spend at least one cycle in each stage (for simplicity, let’s
say it is exactly one). . .

• . . . and move on to the next stage after every cycle.



55 / 100

CPU execution pipelining (simplified)

An Empty CPU Pipeline

JMPCMPMULADDADD

Fetch Decode Exec Mem Write

AND



56 / 100

CPU execution pipelining (simplified)

A Filled CPU Pipeline

Fetch Decode Exec Mem Write

JMP

CMP MUL ADD ANDADD



57 / 100

Function Pointers cause Pipeline Bubbles

Pipeline Bubbles (the technical term is Control Hazard)
• Remember: a Jump sets the instruction pointer to an arbitrary address
• The CPU needs to read the next instruction from this address
• Ergo: the next instruction can only be read once the jump is complete

A Control Hazard
Fetch Decode Exec Mem Write

???

JMP



58 / 100

The cost of a pipeline bubble

Impact
• Dependent on the length of the pipeline

• My Macbook’s CPU has around 15 stages
• That is 15 freaking cycles



59 / 100

How many Function calls are there?

Per-tuple (we are counting inputs as it is easier). . .
Scan None, tuples are read straight from buffer

Selections/Projections One to read the input, one to apply the predicate
Cross Product Inner One to read the input
Cross Product Outer One to read the input
Join (either side) One to read the input (we can inline hash function for

HJ as well as comparison for SMJ)
Group-By One to read the input, one to calculate each new aggregate

value
Output One to extract it for output



60 / 100

Example: estimating function calls in Volcano

Query

σ[1] > 250

Customer

Γ[1], count

Customers (assuming spanned pages)
• 10.000 Tuples
• attributes: id, name, address, nation,
phone, accountNumber

• id, nation, phone, accountNumber are int32
• name, address are dictionary-compressed (int32
keys)

Query Parameters
• Selection Selectivity: 30%, Grouping cardinality:
9

• Hashtable Overallocation Factor: 2
• Buffer Pool: 512KB, Page Size: 64 Byte



61 / 100

Example: Calculation

FirstSelectSelectivity = .3;
CustomerTuples = 10000;
SelectFunctionCalls = CustomerTuples (*Tuples*) * 2 (*One to read input, one to apply

selection*) ;↪→
GroupingFunctionCalls = CustomerTuples * FirstSelectSelectivity * 2 (*One to read input, one

to aggregate *) ;↪→
FinalOutputExtraction = 9 (* One per group *) ;

FunctionCalls == ToString@DecimalForm@Total@{SelectFunctionCalls, GroupingFunctionCalls,
FinalOutputExtraction}↪→

FunctionCalls == 26009.



62 / 100

Now. . . With those numbers in hand



63 / 100

Volcano bottleneck analysis

Recall
• A function call costs 15 cycles
• We can read one integer per cycle

Calculation
Metric Number Cycles/Value Total Cycles
Function Calls 26009 15 390135
Accessed 64-byte Pages 3750 16 60000



64 / 100

Volcano: The Bottom Line

What factor is bounding performance?

Updating from Wolfram Research server ... Updating from Wolfram Research server ... /tmp/mathematica-JbDrnR.pdf



65 / 100

Can we do something about that?



66 / 100

Yes!



68 / 100

Bulk Processing

The problem
• If CPU is the bottleneck. . .
• . . . and function calls dominate CPU costs. . .
• . . . can we process queries without any function calls

• (or at least as few as possible)

The idea
• Turn Control Dependencies into Data Dependencies:

• Instead of processing tuples right away, buffer them
• Fill the buffer with lots of tuples
• Pass the buffer to the next operator



69 / 100

What Bulk Processing looks like

Operator
int select(Table& outputBuffer, Table const& input, int predicate, int attributeOffset) {

for(size_t i = 0; i < input.size(); i++) {
if(input[i][attributeOffset] == predicate)

outputBuffer.push_back(input[i]);
}
return outputBuffer.size();

};



70 / 100

What Bulk Processing looks like

Query Plan

σstatus=“pending”

Order

σpriority=“urgent”
Implementation
Table order, buffer1, buffer2;
int pendingCode = 5, urgentCode = 7;
select(buffer1, order, pendingCode, 1);
select(buffer2, buffer1, urgentCode, 2);



71 / 100

Bulk Processing

Bulk Processing means tight loops
• No function calls, no jumps
• Very CPU efficient
• In Bulk Processing every operator is a pipeline breaker

• Similar rules apply that we used to calculate volcano I/O



72 / 100

Estimating buffer I/O operations in Bulk. . .

Rules
• Each operator reads all of its input sequentially

• number of pages calculated as we did in the Storage session
• Each operator writes all of its output sequentially

• number of pages calculated as we did in the Storage session



73 / 100

in addition. . .



74 / 100

. . . Estimating buffer I/O operations in Bulk

Reading/Writing temporary buffers (hashtables, etc.)
• If buffer fits in memory: No I/O
• Otherwise:

• if buffer accessed sequentially: calculate number of occupied pages (per
pass)

• if buffer accessed randomly/out-of-order: one page access per accessed
tuple



75 / 100

Note: All operators are cost-estimated completely independently!



76 / 100

Example: Selection

Parameters
• Selectivity: 25%
• 1M Tuples, 9 32-bit attributes each
• 512 KB Cache, 64 Byte Pages



77 / 100

Example: Selection

Calculation
Selectivity = .25;
CachelineSize = 64 (*Bytes*) ;
BufferPoolCapacityInPages = (512*1024)/64;
TableSizeInTuples = 1000000;
TableTupleSize = 9 (*Attributes*) * 4 (*Bytes*) ;

TableSize = TableTupleSize * TableSizeInTuples;
TablePages = Ceiling[TableSize / CachelineSize]; (* Spanned Pages *)

SelectionInputInPages = TablePages;
SelectionOutputInPages = Ceiling[TableSize * Selectivity / CachelineSize];
SelectionIO == SelectionInputInPages + SelectionOutputInPages

SelectionIO == 703125



79 / 100

By-Reference Bulk Processing

Saving Bandwidth
• We are copying a lot of data around

• This is a classic computing problem with a classic solution:
• Call by reference

• Instead of producing tuples, we produce their IDs (32-bit positions in
their buffer)

• When processing a tuple, we always use the ID to look up the actual
value
• Lookup costs are the same as they are for a hashtable without conflicts



80 / 100

By-Reference Bulk Processing

Select operator implementation
int select(vector<int>& outputBuffer, optional<vector<int>> const& candidatePositions, //

int predicate, int attributeOffset, vector<Tuple> const& underlyingRelation) {
if(!candidatePositions.has_value()) { // first selection in the plan -> all tuples

candidates↪→
for(size_t i = 0; i < underlyingRelation.size(); i++) {

if(underlyingRelation[i][attributeOffset] == predicate)
outputBuffer.push_back(i);

}
} else { // later selection in the plan -> some tuples potentially not candidates

for(size_t i = 0; i < candidatePositions->size(); i++) {
if(underlyingRelation[(*candidatePositions)[i]][attributeOffset] == predicate)

outputBuffer[outputCursor++] = (*candidatePositions)[i];
}

}
return outputCursor;

}



81 / 100

By-Reference Bulk Processing

Query Plan

σstatus=“pending”

Order

σpriority=“urgent”

Implementation
int pendingCode = 5;
int urgentCode = 7;
vector<Tuple> order;
vector<int> buffer1, buffer2;
auto buffer1Size = select(buffer1, {}, pendingCode, 1, order);
auto buffer2Size = select(buffer2, buffer1, urgentCode, 2,

order);↪→



82 / 100

The rules for input and output have just become more tricky!



83 / 100

Estimating buffer I/O operations in by-reference bulk

Rules
• Each operator reads all of its candidate buffer sequentially

• number of pages calculated as we did in the Storage session
• Each operator writes all of its candidate buffer sequentially

• number of pages calculated as we did in the Storage session

In addition
Each operator "resolves" the candidate references by looking up the values
in the base relation



84 / 100

Calculating Page Access probability

Visualization
Tuple/value

Page 1

Page 2

Page 3

Page 4

Page 5

Accessed 
tuple

Unaccessed 
tuple

Explanation
• Selectivity s is the percentage of tuples being
touched, n the number of tuples on a page

• Assume uniformly distributed values
• What is the probability of any one of them being
touched?
• p(s, n) = 1− (1− s)n

• Number of pages:

ProbabilityOfAccessingPage[s_,n_] := 1-(1-s)^n;
PageFaults := ProbabilityOfAccessingPage[

FirstSelectSelectivity, AverageBaseTableTuplesPerPage]
* BaseTablePages



85 / 100

The rest still holds:



86 / 100

Estimating buffer I/O operations in by-reference bulk

Writing temporary buffers (hashtables, etc.)
• If buffer fits in memory: No I/O
• Otherwise:

• if buffer accessed sequentially: calculate number of occupied pages (per
pass)

• if buffer accessed randomly/out-of-order: one page access per accessed
tuple

Reading temporary buffers
• If buffer fits in memory: No I/O
• if not, hash-probes: one page access per accessed tuple
• Otherwise: sequential I/O over buffer



87 / 100

By-Reference Bulk Processing of Decomposed Data

Saving even more bandwidth
• Every operator processes exactly one column of a tuple
• In N-ary, storage, values of a tuple are co-located on a page

• i.e., you always pay for all values on a page (even if you only process
one)

• these useless values also occupy space in the buffer pool/cache
• DSM fixes both of these problems

• DSM was introduced to databases as a consequence of Bulk
Processing

• Not the other way around
• I have it on pretty good authority!



88 / 100

Example: estimating function calls in Volcano

Query

σ[1] > 250

Customer

Γ[1], count

Customers (assuming spanned pages)
• 10.000 Tuples
• attributes: id, name, address, nation,
phone, accountNumber

• id, nation, phone, accountNumber are int32
• name, address are dictionary-compressed (int32
keys)

Query Parameters
• Selection Selectivity: 30%, Grouping cardinality:
9

• Hashtable Overallocation Factor: 2
• Buffer Pool: 512KB, Page Size: 64 Byte



90 / 100

By-Reference Bulk Processing of DSM Data
ProbabilityOfAccessingPage[s_, n_] := 1 - (1 - s) ^ n;

SelectSelectivity = .3;
CachelineSize = 64(*Bytes*) ;
BufferPoolCapacityInPages = (512 * 1024) / 64;
OrderTableSizeInTuples = 10000;
OrderTupleAttributeSize = 1(*Attributes*) *4(*Bytes*) ;

OrderTableColumnSize = OrderTupleAttributeSize * OrderTableSizeInTuples;
OrderTableColumnPages = Ceiling[OrderTableColumnSize / CachelineSize];
(*Spanned Pages*)

SelectionInputInPages = OrderTableColumnPages;
SelectionOutputInTuples = OrderTableSizeInTuples * SelectSelectivity;
SelectionOutputInPages = Ceiling[SelectionOutputInTuples * 4(*Bytes*) / CachelineSize];
SelectionIO = SelectionInputInPages; (* SelectionOutputInPages < BufferPoolCapacityInPages

*)↪→

GroupingHashTableSize =
Ceiling[2 * GroupingCardinality * NumberOfAttributesInGroupingTable * 4(*Bytes*) ];

(*SelectionOutputInPages + GroupingHashTableSize < BufferPoolCapacityInPages*)

OrderTuplesPerPage = CachelineSize / OrderTupleAttributeSize;
GroupingIO = Ceiling[ProbabilityOfAccessingPage[SelectSelectivity, OrderTuplesPerPage] *

OrderTableColumnPages](*Input 2 *) +
Ceiling[9 * 2(*Attributes*) *4(*Bytes*) / CachelineSize](*Output*) ;

TotalPageIO == ToString @DecimalForm[SelectionIO + GroupingIO] == 1438



90 / 100

The bottom line on bulk processing

Execution cost by processing model (for our query)

Volcano on NSM By Reference

Bulk Processing

on DSM

0

10000

20000

30000

40000

50000



91 / 100

Now the big question:



92 / 100

Why am I telling you now?



93 / 100

Is it too late to do something like that for the competition?



94 / 100

Turns out: you do not have that problem. . .



95 / 100

. . . because you know the query at compile-time



96 / 100

Further reading

Bulk-processing lead to "Vectorization"
Zuckowski. "Balancing vectorized query execution with
bandwidth-optimized storage." PhD Thesis, 2009 Sompolski et al.
"Vectorization vs. compilation in query execution." ACM DaMoN, 2011



97 / 100

Thank you



99 / 100

Provide feedback, please!

https://co572.pages.doc.ic.ac.uk/feedback/processingmodels



100 / 100

Get the slides online

https://co572.pages.doc.ic.ac.uk/decks/ProcessingModels.pdf


	Query Processing Models
	Volcano Processing - Your grandfather's processing model
	Volcano Operators
	Problems with Volcano
	Bulk Processing
	Bulk Processing and Decomposed Storage
	Calculation
	Provide feedback, please!

